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ARTICLE INFO ABSTRACT

Keywords: Bioaggressors cause significant losses in crop production and the efficacy of control methods, primarily based on
Plant protection chemical compounds, comes with considerable environmental and health costs. Plant protection practices
Fungicides

implemented locally overlook the mobility of bioaggressors, which can spread between fields, connecting
different crop populations. As a consequence, the yield in a given field depends also on the management of
connected fields. In this study, the efficiency of different fungicide deployment strategies across a national-scale
agriculture landscape is assessed, balancing the conflicting objectives of maximizing crop production and
reducing fungicide use. A climate-driven metapopulation model describing the dynamics of the peach (Prunus
persica)-brown rot (caused by Monilinia spp.) pathosystem in continental France is used. Fungicide deployment
strategies are based on indices or algorithms, considering network topology, epidemic risk, territory, and sto-
chastic sampling, which prioritize sites to be treated first. Finally, the objective of maximizing crop revenue is
investigated, assuming that untreated fruit can be marketed at higher prices. The optimal strategy depends on the
treatment allocation threshold: if up 20 % of the area is treated, epidemic risk provides the most effective pri-
oritization. If more than 40 % of the area can be treated, a combination of random sampling and risk-based
prioritization proves optimal. When only considering monetary revenues, we find that the higher the con-
sumer’s willingness to pay for untreated fruit, the larger the proportion of untreated sites becomes. Fungicide use
could be avoided if untreated fruit were sold at 2.9 times the price of treated fruit.

Network theory
Metapopulation modeling
Monilinia

1. Introduction habitat size and connectivity (Rusch et al., 2010). Spread can occur via
human activity (e.g, trade; Hernandez Nopsa et al., 2015), natural
vectors (e.g., insects; Strona et al., 2017) or abiotic factors (e.g., wind;

Meyer et al., 2017). Agricultural landscapes can be modeled as networks

A critical obstacle to stable and reliable food systems is the threat
posed by pests and pathogens (including bacteria, fungi, and insects -

hereinafter referred to as “bioaggressors™), which endanger crop health
(Ristaino et al., 2021). They cause production losses ranging from 17 %
to 30 % in major crops, such as wheat, rice, maize, potatoes, and soy-
beans (Savary et al., 2019). Conventional bioaggressor control relies on
phytosanitary products (Sumberg and Giller, 2022), synthetic com-
pounds designed to eliminate or inhibit bioaggressor growth (EPPO,
2004). While these chemicals can enhance short-term yields, they often
lead to resistance in target bioaggressors (Savary et al., 2019), and their
persistence in the environment poses risks to ecosystems and human
health (Rosic et al., 2020; Yadav and Devi, 2017).

The spread of bioaggressors is influenced by spatial factors, including

where fields (nodes) are interconnected by bioaggressor movement
(edges; Gilligan, 2008; Radici et al., 2023a). This network-based
approach enhances our understanding of, and ability to optimize, con-
trol strategies at multiple scales. A substantial body of literature sup-
ports the use of network models to optimize epidemiological control for
animal and human diseases (Keeling and Rohani, 2011). Although
scarcer, there exist applications to plant bioaggressor control. For
instance, Strona et al. (2017) found that removing nodes with the
highest PageRank (a measure of importance of a node based on the
number and quality of edges connected to it; Page, 1998) reduces the
size of the the largest set of connected nodes faster that using other
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methods, thus reducing the spread of X. fastidiosa among olive orchards
in southern Italy. In context of seed markets, Andersen et al. (2019)
suggested that nodes characterized by high degree (i.e., which are more
connected) may be identified as influential spreaders, and so prioritized
to be immunized.

The objective of this study is to provide optimal management stra-
tegies to control the spread of airborne bioaggressors. By optimal, we
intend strategies that, while reducing appeal to phytosanitary treatment,
seek to maximize a crop yield objective. At first, this objective is
formulated in terms of peach production, while later it is expressed in
terms of monetary revenues. As study case, we use the peach (Prunus
persica)-brown rot (caused by Monilinia spp.) pathosystem at the na-
tional scale in France. A climate-driven metapopulation model, that
captures the spatio-temporal dynamics of brown rot, is used (Radici
et al., 2024). The model subdivides French peach-growing regions into
spatial cells, simulating disease dynamics influenced by local weather
conditions that affect peach phenology, pathogen etiology, and the
regional wind-driven dispersal of Monilinia spores. For this pathosystem,
prioritization strategies for fungicide application are derived, identi-
fying which cells to treat first based on network topology, risk and ter-
ritorial indices, and stochastic sampling. We compare the effectiveness
of these strategies in reducing fungicide use while meeting production
targets. Finally, the impact of different pricing scenarios for treated
versus untreated fruit on revenues are investigated, through the esti-
mation of the price increase needed for untreated fruit to eliminate
fungicide application.

2. Materials and methods
2.1. Metapopulation model overview

The metapopulation model presented in Radici et al. (2024) — and
summarized in this section —is used to simulate brown rot spread in
peach cultivated fields in France. The geographic domain corresponds to
the Safran grid (Bertuzzi and Clastre, 2022), consisting of square cells
measuring 0.11° x 0.11° (approximately 8 x 8 km?, hereinafter referred
to as “nodes”), overlaid on continental France. The 755 nodes with
significant peach orchard coverage (greater than 0.01 ha/km?; Fig. 1a)
are retained. The ripening period is computed for each node and each
year between 1996 and 2020, from pit hardening (ty) to harvest (tg),
using a phenological temperature-dependent model (see Vanalli et al.,
2021 for details). This period corresponds to the time when fruits are
susceptible to infection. Note that ty varies across peach cultivars (e.g.,
early, mid-early, mid-late, and late). For each node i, a climate driven
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Susceptible-Exposed-Infected (SEI type) epidemiological model (see
Bevacqua et al., 2023 for details) is run from tj to ty, where Ii(tp) = 0
fruit/m? and Si(to) + Ei(to) = 15 fruit/m?. Each year, for each node, the
value of E;(tp) is stochastically determined by disease incidence in the
previous year. If Efto) > 0 fruit/m?, the node is considered “exposed”,
and the epidemic dynamics operate independently of the epidemic state
of other nodes. On the other hand, if Ei(ty) = 0 fruit/mz, no epidemic
occurs until an inoculum from connected infected nodes is introduced.
In this case, the daily probability of the node i becoming “exposed”(E;(t)
> 0 fruit/m?) is computed, as a function of the epidemic status of the
other nodes (i.e., higher infection levels translate into higher spore
production) and of the airborne connectivity expressed via a
time-varying connectivity matrix Wy, where the element wy;; represents
the probability that spores released from node i are deposited in node j
on day t. The connectivity matrix is computed multiple averaging
Lagrangian trajectory simulations performed with HYSPLIT (Draxler
and Hess, 1998), integrated with an aerobiological model simulating the
transport of Monilinia spores, accounting for environmental conditions
for spore advection, survival and deposition. Its static equivalent W,
obtained by averaging over time during the ripening period, summarizes
the connectivity of a network where nodes represent spatial cells, and
wind-driven spore transport forms the directed and weighted edges
connecting these nodes (Fig. 1b).

2.2. Strategies to prioritize nodes to be treated

A disease control action, such as the application of fungicides, is
associated with costs proportional to the area affected by the action. If
these costs cannot be fully covered due to economic, environmental, or
social reasons, it is essential to identify the nodes where immunization
should be prioritized. We therefore define a “strategy” as a ranking of
nodes, obtained via an index or an algorithm, which prioritize nodes to
be treated first. Consequently, we define an “index” as the quantification
of a property of a node, which univocally defines its ranking (e.g., by
decreasing order of the index), and an “algorithm” as a procedure to
sample nodes within the network.

There are several indices and algorithms that have been proposed to
rank the nodes of a network for targeted interventions aimed at pre-
venting the spread of contagion phenomena (de Arruda et al., 2014;
Brockmann and Helbing, 2013). In the case of a network of orchards,
addressing a node i involves preventing the spread of the disease within i
by treating its cultivated area with fungicide (Ei(t) = I;(t) = 0 fruit/mz).

We propose 14 different control strategies, whose description is re-
ported in Table 1. These are divided into i) network centrality indices, i.
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Fig. 1. a) The study domain, consisting of 755 square cells (nodes) overlaid on the peach production basin in France, and b) the corresponding static wind-
connectivity matrix W. The node identifiers (ID) range from 1 to 755, with some reference sites indicated (IDs 1, 100, 200, 300, 400, 500, 600, 700, and 755).

The IDs increase first from west to east, and second, from north to south.
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Table 1

List of the strategies, named as the corresponding indices or algorithms, used to
prioritize nodes for control optimization. See Fig. SI1 for a spatial representation
of the indices.

Strategy Type Description References
In-degree Network The number of edges Posfai and
centrality (connections) incoming a ~ Barabasi (2016)
index node
Out-degree Network The number of edges Posfai and
centrality outgoing a node Barabasi (2016)
index
In-strength Network The sum of the weights of ~ Pdsfai and
centrality the edges incoming a Barabdsi (2016)
index node
Out-strength Network The sum of the weights of ~ Pdsfai and
centrality the edges outgoinganode  Barabasi (2016)
index
Betweenness Network The number shortest Freeman (1978)
centrality paths beetween two other
index nodes of the network
passing for a specific
node
Coreness Network The k-shell Seidman (1983)
propagation decomposition of a
index network into
substructures from the
most peripherical to the
most central one
GRWA Network Generalized Random Travencolo and
propagation Walker Accessibility: a Costa (2008); de
index measure of accessibility Arruda et al.
based on the Random (2014)
Walker
VoteRank Network The ability of spreading Zhang et al.
propagation information, based on an (2016)
index iterative voting algorithm
Vulnerability Epidemic risk The average local losses Radici et al.
index by secondary infection, (2024)
started anywhere in the
region
Dangerousness  Epidemic risk The overall average Radici et al.
index losses in the region (2024)
caused by a primary
infection in that node
OrchardDen Territorial The peach cultivated area -
index within a node
Random Stochastic Random sampling -
algorithm
Regular Stochastic A sampling based on the -
algorithm st_sample () function
(type = 'regular’) of
the sfR package,
(version R 0.5-0)
VulnRand Mixed Stochastic sampling, -
stochastic weighted by vulnerability
algorithm
DanRand Mixed Stochastic sampling, -
stochastic weighted by
algorithm dangerousness

e., in-degree, in-strength, out-degree, out-strength, and betweenness; ii)
network propagation indices, i.e., coreness, GRWA, voteRank; iii), epi-
demiologial risk indices, i.e. vulnerability and dangerousness (see Radici
et al., 2024, for details); iv) host density indices, v) random and regular
sampling, and vi) mixing previous criteria, i.e., vulnRand and danRand.
The vulnRand and danRand algorithms consist of stochastic samplings
of nodes, with probabilities proportional to the nodes’ vulnerability and
dangerousness, respectively. Nodes indices are computed on the
network defined by the matrix W.

2.3. Evaluating management performances

The performance of the prioritization strategies are assessed for 126
intervals of treated nodes (ranging from 0 to 755 in increments of 6, i.e.,
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0, 6, 12, ..., 750, 755) for a total of 14 x 126 = 1764 management
scenarios. A management scenario (MS) is defined as a combination of
quantity of treated nodes and a strategy used to prioritize them. For each
MS, i) the number of nodes to be treated and the control strategy are
defined,; ii) the corresponding set of treated nodes Tys is determined and
the probability of nodes in Ty of becoming “exposed” is set to 0; iii) the
model to assess crop production. These three steps are repeated sys-
tematically to evaluate 1764 possible MSs. Due to the stochastic nature
of the SEI model, 500 Monte Carlo simulations are conducted for each
MS (for a total of 1764 x 500 = 882 - 10° model runs) to gather robust
statistics on crop production, including median values and percentiles.
For each of the 500 replicates of a given MS, peach varieties across the
domain, the starting year (randomly selected between 2001 and 2010),
and the initial infection state are randomized. Following Radici et al.
(2024), the initial infection state assumes that 20 % of the nodes are
infected at the beginning of the simulation. For each MS, crop produc-
tion Py at harvest time in the 5th simulated year is assessed, explicitly
considering the contribution of treated and untreated nodes:

Pys = Zsi(tH,i)mi(tH.i)Ai + Zsj(tHj)mj(tHj)Aj (€]

icU jeT

where S and m are respectively the susceptible fruit density (fruit/m?)
and the single fruit mass (g/fruit, estimated via a a fruit growth curve
from Bevacqua et al., 2023) at harvest time ty, whilst A is the peach
cultivated area in treated (i € T) or untreated (j € U) nodes.

Peach cultivated areas varies between nodes, hence the same number
of treated nodes may correspond to different treated areas. Meaningful
comparison between strategies should be based on the total treated area.
To robustly identify the prioritization strategy that performed best for a
given level of fungicide application, two-sample Wilcoxon tests (Mann
and Whitney, 1947) are conducted between groups of strategies for
different treated areas (i.e., under 10 %, 20 %, ..., 100 %). For each
treatment threshold, we consider as optimal those strategies that never
result in lower production according to the one-tail two-sample Wil-
coxon test (package R 'stats’, version 3. 6. 2, was used to perform the
statistic analysis).

Assuming that crop production from untreated areas may have
higher market value than that from treated areas, we estimated, for a
given MS, a proxy of crop-related revenues Rys:

RMS =7 (Zﬁsi(tH)m,-(tH)Ai + ZSJ(tH)mj(tH)A_,) (2)

icU JjeT

where 7 and 6r represent the prices for treated and untreated peaches,
respectively. The price multiplier 6 indicates the consumer willingness
to pay more for untreated fruit. Assuming a constant price z, the proxy
R'ys = Rys /7 can be used, without loss of generality, to analyze the
relative impact of different values of ¢ on the revenues. Specifically, the
threshold value of 0 above which fungicide application becomes
economically disadvantageous is explored.

3. Results

National crop production Py increases with the treated area (see
Fig. 2), reducing disease spread, up to approximately 166 kton (16.7 t/
ha), when all the peach cultivated areas (i.e., all nodes in the network)
are treated, which corresponds to a scenario with no disease. On the
other hand, in absence of any treatment, the production is estimated to
be around 133 kton, reflecting a crop reduction of nearly 20 %. The
optimal prioritization strategy varies as a function of the treated area. In
Fig. 2a, the vulnerability index performs well for treated areas less than
20 %, the out-strength index is most effective for treated areas between
25 % and 35 %, and the vulnRand index works best for treated areas
between 45 % and 85 %. VulnRand is also the most effective strategy
overall (Fig. 2b). Stochasticity in the results decreases as the treated area
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Fig. 2. Estimated nationwide peach production in France (median and inter-quartile ranges), in the presence of brown rot disease, based on varying amounts of
treated area where the disease cannot spread. The areas to be treated, modeled as nodes in a network, are selected according to different prioritization strategies
(color code - see legend in the inset b). The colored points represent the combinations of management scenarios MS (treated area and prioritization strategy) that
maximize nationwide production, while the other combinations (median and inter-quartile ranges) are shown in grey. The inset (b) shows the expected value of the
medians for each prioritization strategy (intended as the normalized integral over the trajectory of the medians) and provides a global view of each strategy’s

performance.

increases, as it is primarily driven by the variability in epidemic dy-
namics, which is increasingly reduced as more nodes are treated (the
interquartile rage decreases from 37 to 10 kton). For high treated areas
(>90 %), it is not possible to identify a unique optimal strategy (see
Table 2) because, as the number of treated nodes approaches the entire
study area, the importance of the prioritization strategy diminishes.
Interestingly, even in the 20-40 % treated area range, no single strategy
significantly outperforms the others, although both danRand and vuln-
Rand perform well.

The curves of the maximum revenues proxy R'ys for different treated
areas and price multiplier 6 consider again a mix of prioritization al-
gorithms (Fig. 3). For = 1 (lower curve in panel a), there is no added
value in untreated fruit, so that maximizing revenues is equivalent to
maximize overall production (as reported in Fig. 2) and could be ob-
tained treating 100 % of the production sites. For increasing values of 6,
revenues increase, and the treated area at which the revenues are
maximized (i.e., the treated area on the x-axis that corresponds to the
highest point of the depicted curve) decreases. In the extreme case, for 6
> 2.88, the optimal management would be to leave all the crop pro-
duction sites untreated.

Since the estimated revenues vary with 6, also the optimal

Table 2

Statistically optimal strategies for each decile of treated area, i.e., whose per-
formance are significantly better (p-value <0.05 in the one-tail two-samples
Wilcoxon statistical test) than any other. Two-sample comparisons are reported
extensively in Fig.s SI2 and SI3.

Treated area Optimal strategies

0-10 % Vulnerability

10-20 % Vulnerability, orchardDen

20-30 % DanRand, vulnRand

30-40 % Out-strength, GRWA, danRand, vulnRand
40-50 % VulnRand

50-60 % VulnRand

60-70 % VulnRand

70-80 % VulnRand

80-90 % VulnRand

90-100 % DanRand, voteRank, vulnRand, Regular

prioritization strategy for a given treated area varies. For § = 1, the set of
strategies optimizing production at a given treated area is the same as
reported in Fig. 2a. For increasing values of 0, strategies such as the out-
strength, which performed well for 6 = 1 for treated areas between 25 %
and 40 %, are now outperformed (these outcomes are summarized in
Fig. 3b). The strategies optimizing the total revenues are vulnRand (6 €
(1, 1.31]), danRand (@ € (1.31, 1.73]), and vulnerability (8 € (1.73,
2.88D).

4. Discussion

This study is part of a body of recent research highlighting the
importance of spatial planning at the landscape scale for effective dis-
ease management (Papaix et al., 2014; Fabre et al., 2021). Dispersal of
bioaggressors creates inter-dependencies between measures taken at
different sites, necessitating coordinated strategies for optimized con-
trol. Landscape-scale management is essential for disease surveillance
(Park et al., 2011; Carvajal-Yepes et al., 2019; Meyer et al., 2017; Radici
et al., 2022) and it is increasingly recognized in EU agricultural policies
(European Commission, 2020). For brown rot of peaches, we assumed
that the national scale was appropriate for capturing these
inter-dependencies. This choice represents a simplification, since bio-
aggressors spread over administrative boundaries. However, in this
particular case, French boundaries corresponds to significative ecolog-
ical obstacles (Mediterranean Sea, the Alps and the Pyrenees) to the
dispersal of Monilinia spores. The main hypothesis would not have stand
for other pathosystems, such as soybean rust (Phakopsora pachyrhizi) or
wheat stem rust (Puccinia graminis), due to the large host crop areas and
extreme pathogen mobility (Thompson et al., 2016; Radici et al.,
2023b).

Increasing crop production and reducing the use of chemicals are
considered conflicting objectives (Morris et al., 2024). However, in the
long term, these objectives may converge due to the emergence of
resistance against chemical treatments, which diminishes their effec-
tiveness over time (Olitaa et al., 2023). Our model has provided insights
into the form of the relationship between fungicide use and crop pro-
duction. Specifically, the curve depicting optimized total production as a
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plier 6.

function of treated area exhibits a downwards concavity (Fig. 2a). This
implies that in a scenario where all orchards are treated, a slight
reduction in fungicide use would have a minimal impact on total pro-
duction, similarly to what happens in human and veterinary diseases
control due to the “herd immunity” effect (Keeling and Rohani, 2011).

Strategy performances are characterized by very high stochasticity,
implying the use of statistical tests to be robustly assessed. The first
component of this stochasticity is related to the impact of weather and
peach variety on total production. This is the only source of stochasticity
when the domain is fully treated, and results in an interquartile range of
about 10 kton in total production. The second component is epidemio-
logical and concerns the probability of airborne infection, reflecting the
randomness of wind as dispersal medium (Jeger et al., 2007). Combined
with the first, the variability is highest when no treatment is applied
(interquartile range of 37 kton).

Given the variety of available strategies to prioritize treatment sites
according to multiple objectives, our findings can be conceptualized as
identifying a Pareto front. This Pareto fron includes optimal manage-
ment scenarios in which no alternative exists with both a smaller treated
area and a higher total production. Among the prioritization strategies,
the vulnRand index emerges as the most effective, composing large part
of the Pareto front when the treated area exceeds 20 %, with its random
component gaining importance as treatment coverage increases. Pres-
ently, treated areas cover the vast majority of peach orchards (Ministere
de I’Agriculture, 2020), but our analysis suggests that if agricultural
practices were to shift toward a substantial reduction in fungicide
deployment — a case that mirrors a scenario in public health where
limited vaccine doses are preferentially allocated to targeted individuals
— prioritization based on node vulnerability would be the most effec-
tive. In the French context, this corresponds to targeting orchards in the
middle Rhone region (Fig. SI1k). A spatial node is considered more
vulnerable if, while initially disease-free, it has a high risk of developing
secondary infections (Meentemeyer et al., 2011). In the presented
framework, vulnerability is strongly influenced by site-specific factors,
such as the frequency of rainy days during the susceptibility period, as
precipitation is necessary for fruit to transition from an exposed to an
infected state (Radici et al., 2024; Bevacqua et al., 2023).

Interestingly, the distribution of organic peach and nectarine

cultivation across productive French departments partially aligns with
our suggested strategy based on vulnerability (Ministere de 1'Agri-
culture, 2020). For instance, in the Pyrénées-Orientales — a
low-vulnerability region (“département”) near the Spanish border (Fig. 2
and SI1) — 44 % of areas are organic. In contrast, Drome and Gard,
which are highly vulnerable, have organic shares of just 5.9 % and
6.1 %, respectively.

When the majority of the nodes in a network are treated, the strategy
used to select which ones to treat becomes less significant, up to the
extreme case where, if all nodes are treated, any ordering strategy be-
comes irrelevant. However, before reaching this extreme case, our re-
sults indicate that the composite index combining vulnerability with
random sampling turns to be the best. In our study, random sampling
alone performed unexpectedly well and incorporating a random
component into an environmentally informed prioritization, such as
vulnerability, enhanced performance further.

Unlike spatially auto-correlated sampling techniques, random sam-
pling achieves a more homogeneous node coverage, similar to regular
sampling, which also shows a competitive performance (Fig. 2b).
Random sampling is commonly used in disease surveillance to ensure
broad coverage (Herrera et al., 2016), and combining different priori-
tization algorithms in a new one is a well-established practice in plant
disease = management (Sutrave et al, 2012). Combining
epidemiologically-informed prioritizations (like vulnerability) with
random sampling helps mitigate decentralized transmission of the dis-
ease, especially after high-risk nodes have been immunized.

Among the network-based indices tested, only out-strength demon-
strated optimal performance under intermediate treatment targets. This
finding suggests that, for controlling brown rot of peaches, management
strategies should prioritize epidemiological or territorial characteristics
— such as rainy-day frequency, which correlates with vulnerability —
over purely network-based metrics. Despite the minor role of network-
based indices, not all performed equally. Out-strength and out-degree
consistently outperformed in-strength and in-degree, respectively. This
differentiation aligns with their epidemiological interpretations: nodes
with high out-degree or out-strength are more likely to act as influential
spreaders in small networks (Pautasso et al., 2010). Similarly, Andersen
et al. (2019) demonstrated that the out-degree of a seed-trade network’s
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starting node can determine the final size of a disease outbreak. These
observations underscore the utility of certain network metrics in iden-
tifying influential nodes, even if their broader application to our
pathosystem is limited.

The presented exercise allowed to identify which areas, in the hy-
pothetical case of a collective management of the national peach pro-
duction area, should remain untreated in order to maximize collective
revenues. Nowadays, 88 % of the French peach and nectarine cultivated
areas are treated with fungicide (Ministere de I'Agriculture, 2020).
According to the presented simulations, a value of § ~ 1.03 would justify
such a use of fungicide. However, the price of organic peaches is almost
double (i.e., 6 ~ 2; Eurostat, 2024). One epidemiological reason for this
mismatch is the fact that we modeled only the impact of brown rot,
while fungicide-free peach orchards face risks from multiple fungal
diseases, including peach leaf curl (Taphrina deformans), peach scab
(Cladosporium carpophilum), and powdery mildew (Podosphaera pannosa;
Luo et al., 2022). Moreover, organic farming standards are far more
rigorous than what we model as “untreated”. In fact, organic farming not
only addresses the use of fungicides but also regulates other phytosa-
nitary products, the use of fertilizers, and other agricultural practices. By
considering only brown rot dynamics, our simulations realistically es-
timate an upper boundary of the total production, rather than its ex-
pected value. Nonetheless, the significance of this study lies in
demonstrating the effects that a higher market value of organic products
should have on a coordinated agricultural management. This value can
be increased either by a greater willingness of consumers to pay or by
higher costs associated with the use of polluting substances. Indeed,
recent research demonstrated that consumers are prone to pay more for
products issued by low-input agriculture. Lin et al. (2008) estimated
price premiums associated with product attributes focusing on five
major fresh fruits and five major fresh vegetables in the United States.
They suggested that the organic attribute commands a significant price
premium, which varies from a minimum of 15 % above conventional
prices for carrots and tomatoes to a maximum of 60 % for potatoes.
Similarly, de Souza Tavares et al. (2021) reported that organic juices are
more expensive than their conventional counterparts with prices
approximately 50 % higher in Brazil and 10 % higher in France, sup-
porting the perception of higher costs associated with organic products.

Alternatively, higher income to producers who favor untreated
production might be induced by policies designed to internalize the
environmental costs of synthetic compounds used in treatments
(Kiimmerer et al., 2019). According to the “polluters pay” principle,
external costs could be internalized through taxation, promoting less
harmful alternatives (Ambec and Ehlers, 2016). This principle underpins
policies like the “carbon tax”, which aims to reduce greenhouse gas
emissions by increasing the costs of high-emission options (Khan, 2015).

Although the higher profits associated with organic fruit production
may encourage the expansion of these practices, especially in the
wealthiest parts of the world, it is important to remember that bio-
aggressors control aims to ensure food access for all of the planet’s in-
habitants (Savary et al., 2019). This means that, when an agricultural
product is essential for feeding a population, it is unacceptable to reduce
its quantity in order to increase producers’ profits. While political con-
siderations are beyond the scope of our work, we believe they should not
be overlooked when interpreting our results.

Apart from the omission of other peach fungal pathogens and of
possible external introduction of Monilinia spores an important limita-
tion of the study concerns the absence of fungicide-related costs. Taking
into account these costs would make the production of untreated fruit
easier than in the presented framework. This would result in a faster
reduction of the treated area as the price multiplier § increases.

When considering the impact of bioaggressors in crop production in
future decades, particular attention should be given to the synergy with
expected climate change, which is already affecting agricultural yields
and larger impacts are expected in future scenarios (Ray et al., 2019;
Ortiz-Bobea et al., 2021; Lesk et al., 2016). Estimates indicate an

Agriculture, Ecosystems and Environment 392 (2025) 109722

expected reduction of the global crop yield from 3 % to 7 % for each
degree-Celsius of temperature increase (Zhao et al., 2017; Liu et al.,
2016; Rezaei et al., 2023) and a reduced cropland suitability at lower
latitudes (Rosenzweig et al., 2014; Zabel et al., 2014). In the case of
peach production in France, it is expected to decline drastically without
adaptation measures, as regions where peach is currently cultivated
might not be able to assure chilling conditions necessary for plant
blooming (Vanalli et al., 2021). Conversely, the impact of brown rot may
diminish under warmer and drier conditions (Vanalli et al., 2024).
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