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A B S T R A C T

Bioaggressors cause significant losses in crop production and the efficacy of control methods, primarily based on 
chemical compounds, comes with considerable environmental and health costs. Plant protection practices 
implemented locally overlook the mobility of bioaggressors, which can spread between fields, connecting 
different crop populations. As a consequence, the yield in a given field depends also on the management of 
connected fields. In this study, the efficiency of different fungicide deployment strategies across a national-scale 
agriculture landscape is assessed, balancing the conflicting objectives of maximizing crop production and 
reducing fungicide use. A climate-driven metapopulation model describing the dynamics of the peach (Prunus 
persica)-brown rot (caused by Monilinia spp.) pathosystem in continental France is used. Fungicide deployment 
strategies are based on indices or algorithms, considering network topology, epidemic risk, territory, and sto
chastic sampling, which prioritize sites to be treated first. Finally, the objective of maximizing crop revenue is 
investigated, assuming that untreated fruit can be marketed at higher prices. The optimal strategy depends on the 
treatment allocation threshold: if up 20 % of the area is treated, epidemic risk provides the most effective pri
oritization. If more than 40 % of the area can be treated, a combination of random sampling and risk-based 
prioritization proves optimal. When only considering monetary revenues, we find that the higher the con
sumer’s willingness to pay for untreated fruit, the larger the proportion of untreated sites becomes. Fungicide use 
could be avoided if untreated fruit were sold at 2.9 times the price of treated fruit.

1. Introduction

A critical obstacle to stable and reliable food systems is the threat 
posed by pests and pathogens (including bacteria, fungi, and insects - 
hereinafter referred to as “bioaggressors”), which endanger crop health 
(Ristaino et al., 2021). They cause production losses ranging from 17 % 
to 30 % in major crops, such as wheat, rice, maize, potatoes, and soy
beans (Savary et al., 2019). Conventional bioaggressor control relies on 
phytosanitary products (Sumberg and Giller, 2022), synthetic com
pounds designed to eliminate or inhibit bioaggressor growth (EPPO, 
2004). While these chemicals can enhance short-term yields, they often 
lead to resistance in target bioaggressors (Savary et al., 2019), and their 
persistence in the environment poses risks to ecosystems and human 
health (Rosic et al., 2020; Yadav and Devi, 2017).

The spread of bioaggressors is influenced by spatial factors, including 

habitat size and connectivity (Rusch et al., 2010). Spread can occur via 
human activity (e.g., trade; Hernández Nopsa et al., 2015), natural 
vectors (e.g., insects; Strona et al., 2017) or abiotic factors (e.g., wind; 
Meyer et al., 2017). Agricultural landscapes can be modeled as networks 
where fields (nodes) are interconnected by bioaggressor movement 
(edges; Gilligan, 2008; Radici et al., 2023a). This network-based 
approach enhances our understanding of, and ability to optimize, con
trol strategies at multiple scales. A substantial body of literature sup
ports the use of network models to optimize epidemiological control for 
animal and human diseases (Keeling and Rohani, 2011). Although 
scarcer, there exist applications to plant bioaggressor control. For 
instance, Strona et al. (2017) found that removing nodes with the 
highest PageRank (a measure of importance of a node based on the 
number and quality of edges connected to it; Page, 1998) reduces the 
size of the the largest set of connected nodes faster that using other 
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methods, thus reducing the spread of X. fastidiosa among olive orchards 
in southern Italy. In context of seed markets, Andersen et al. (2019)
suggested that nodes characterized by high degree (i.e., which are more 
connected) may be identified as influential spreaders, and so prioritized 
to be immunized.

The objective of this study is to provide optimal management stra
tegies to control the spread of airborne bioaggressors. By optimal, we 
intend strategies that, while reducing appeal to phytosanitary treatment, 
seek to maximize a crop yield objective. At first, this objective is 
formulated in terms of peach production, while later it is expressed in 
terms of monetary revenues. As study case, we use the peach (Prunus 
persica)-brown rot (caused by Monilinia spp.) pathosystem at the na
tional scale in France. A climate-driven metapopulation model, that 
captures the spatio-temporal dynamics of brown rot, is used (Radici 
et al., 2024). The model subdivides French peach-growing regions into 
spatial cells, simulating disease dynamics influenced by local weather 
conditions that affect peach phenology, pathogen etiology, and the 
regional wind-driven dispersal of Monilinia spores. For this pathosystem, 
prioritization strategies for fungicide application are derived, identi
fying which cells to treat first based on network topology, risk and ter
ritorial indices, and stochastic sampling. We compare the effectiveness 
of these strategies in reducing fungicide use while meeting production 
targets. Finally, the impact of different pricing scenarios for treated 
versus untreated fruit on revenues are investigated, through the esti
mation of the price increase needed for untreated fruit to eliminate 
fungicide application.

2. Materials and methods

2.1. Metapopulation model overview

The metapopulation model presented in Radici et al. (2024) — and 
summarized in this section —is used to simulate brown rot spread in 
peach cultivated fields in France. The geographic domain corresponds to 
the Safran grid (Bertuzzi and Clastre, 2022), consisting of square cells 
measuring 0.11∘ × 0.11∘ (approximately 8 × 8 km2, hereinafter referred 
to as “nodes”), overlaid on continental France. The 755 nodes with 
significant peach orchard coverage (greater than 0.01 ha/km2; Fig. 1a) 
are retained. The ripening period is computed for each node and each 
year between 1996 and 2020, from pit hardening (t0) to harvest (tH), 
using a phenological temperature-dependent model (see Vanalli et al., 
2021 for details). This period corresponds to the time when fruits are 
susceptible to infection. Note that tH varies across peach cultivars (e.g., 
early, mid-early, mid-late, and late). For each node i, a climate driven 

Susceptible-Exposed-Infected (SEI type) epidemiological model (see 
Bevacqua et al., 2023 for details) is run from t0 to tH, where Ii(t0) = 0 
fruit∕m2 and Si(t0) + Ei(t0) = 15 fruit∕m2. Each year, for each node, the 
value of Ei(t0) is stochastically determined by disease incidence in the 
previous year. If Ei(t0) > 0 fruit∕m2, the node is considered “exposed”, 
and the epidemic dynamics operate independently of the epidemic state 
of other nodes. On the other hand, if Ei(t0) = 0 fruit∕m2, no epidemic 
occurs until an inoculum from connected infected nodes is introduced. 
In this case, the daily probability of the node i becoming “exposed”(Ei(t) 
> 0 fruit∕m2) is computed, as a function of the epidemic status of the 
other nodes (i.e., higher infection levels translate into higher spore 
production) and of the airborne connectivity expressed via a 
time-varying connectivity matrix Wt, where the element wijt represents 
the probability that spores released from node i are deposited in node j 
on day t. The connectivity matrix is computed multiple averaging 
Lagrangian trajectory simulations performed with HYSPLIT (Draxler 
and Hess, 1998), integrated with an aerobiological model simulating the 
transport of Monilinia spores, accounting for environmental conditions 
for spore advection, survival and deposition. Its static equivalent W, 
obtained by averaging over time during the ripening period, summarizes 
the connectivity of a network where nodes represent spatial cells, and 
wind-driven spore transport forms the directed and weighted edges 
connecting these nodes (Fig. 1b).

2.2. Strategies to prioritize nodes to be treated

A disease control action, such as the application of fungicides, is 
associated with costs proportional to the area affected by the action. If 
these costs cannot be fully covered due to economic, environmental, or 
social reasons, it is essential to identify the nodes where immunization 
should be prioritized. We therefore define a “strategy” as a ranking of 
nodes, obtained via an index or an algorithm, which prioritize nodes to 
be treated first. Consequently, we define an “index” as the quantification 
of a property of a node, which univocally defines its ranking (e.g., by 
decreasing order of the index), and an “algorithm” as a procedure to 
sample nodes within the network.

There are several indices and algorithms that have been proposed to 
rank the nodes of a network for targeted interventions aimed at pre
venting the spread of contagion phenomena (de Arruda et al., 2014; 
Brockmann and Helbing, 2013). In the case of a network of orchards, 
addressing a node i involves preventing the spread of the disease within i 
by treating its cultivated area with fungicide (Ei(t) = Ii(t) = 0 fruit∕m2).

We propose 14 different control strategies, whose description is re
ported in Table 1. These are divided into i) network centrality indices, i. 

Fig. 1. a) The study domain, consisting of 755 square cells (nodes) overlaid on the peach production basin in France, and b) the corresponding static wind- 
connectivity matrix W. The node identifiers (ID) range from 1 to 755, with some reference sites indicated (IDs 1, 100, 200, 300, 400, 500, 600, 700, and 755). 
The IDs increase first from west to east, and second, from north to south.

A. Radici et al.                                                                                                                                                                                                                                  Agriculture, Ecosystems and Environment 392 (2025) 109722 

2 



e., in-degree, in-strength, out-degree, out-strength, and betweenness; ii) 
network propagation indices, i.e., coreness, GRWA, voteRank; iii), epi
demiologial risk indices, i.e. vulnerability and dangerousness (see Radici 
et al., 2024, for details); iv) host density indices, v) random and regular 
sampling, and vi) mixing previous criteria, i.e., vulnRand and danRand. 
The vulnRand and danRand algorithms consist of stochastic samplings 
of nodes, with probabilities proportional to the nodes’ vulnerability and 
dangerousness, respectively. Nodes indices are computed on the 
network defined by the matrix W.

2.3. Evaluating management performances

The performance of the prioritization strategies are assessed for 126 
intervals of treated nodes (ranging from 0 to 755 in increments of 6, i.e., 

0, 6, 12, …, 750, 755) for a total of 14 × 126 = 1764 management 
scenarios. A management scenario (MS) is defined as a combination of 
quantity of treated nodes and a strategy used to prioritize them. For each 
MS, i) the number of nodes to be treated and the control strategy are 
defined; ii) the corresponding set of treated nodes TMS is determined and 
the probability of nodes in TMS of becoming “exposed” is set to 0; iii) the 
model to assess crop production. These three steps are repeated sys
tematically to evaluate 1764 possible MSs. Due to the stochastic nature 
of the SEI model, 500 Monte Carlo simulations are conducted for each 
MS (for a total of 1764 × 500 = 882 ⋅ 103 model runs) to gather robust 
statistics on crop production, including median values and percentiles. 
For each of the 500 replicates of a given MS, peach varieties across the 
domain, the starting year (randomly selected between 2001 and 2010), 
and the initial infection state are randomized. Following Radici et al. 
(2024), the initial infection state assumes that 20 % of the nodes are 
infected at the beginning of the simulation. For each MS, crop produc
tion PMS at harvest time in the 5th simulated year is assessed, explicitly 
considering the contribution of treated and untreated nodes: 

PMS =
∑

i∈U
Si(tH,i)mi(tH,i)Ai +

∑

j∈T
Sj(tH,j)mj(tH,j)Aj (1) 

where S and m are respectively the susceptible fruit density (fruit∕m2) 
and the single fruit mass (g∕fruit, estimated via a a fruit growth curve 
from Bevacqua et al., 2023) at harvest time tH, whilst A is the peach 
cultivated area in treated (i ∈ T) or untreated (j ∈ U) nodes.

Peach cultivated areas varies between nodes, hence the same number 
of treated nodes may correspond to different treated areas. Meaningful 
comparison between strategies should be based on the total treated area. 
To robustly identify the prioritization strategy that performed best for a 
given level of fungicide application, two-sample Wilcoxon tests (Mann 
and Whitney, 1947) are conducted between groups of strategies for 
different treated areas (i.e., under 10 %, 20 %, …, 100 %). For each 
treatment threshold, we consider as optimal those strategies that never 
result in lower production according to the one-tail two-sample Wil
coxon test (package R ’stats’, version 3.6.2, was used to perform the 
statistic analysis).

Assuming that crop production from untreated areas may have 
higher market value than that from treated areas, we estimated, for a 
given MS, a proxy of crop-related revenues RMS: 

RMS = π
(
∑

i∈U
θSi(tH)mi(tH)Ai +

∑

j∈T
Sj(tH)mj(tH)Aj

)

(2) 

where π and θπ represent the prices for treated and untreated peaches, 
respectively. The price multiplier θ indicates the consumer willingness 
to pay more for untreated fruit. Assuming a constant price π, the proxy 
Ŕ MS = RMS∕π can be used, without loss of generality, to analyze the 
relative impact of different values of θ on the revenues. Specifically, the 
threshold value of θ above which fungicide application becomes 
economically disadvantageous is explored.

3. Results

National crop production PMS increases with the treated area (see 
Fig. 2), reducing disease spread, up to approximately 166 kton (16.7 t/ 
ha), when all the peach cultivated areas (i.e., all nodes in the network) 
are treated, which corresponds to a scenario with no disease. On the 
other hand, in absence of any treatment, the production is estimated to 
be around 133 kton, reflecting a crop reduction of nearly 20 %. The 
optimal prioritization strategy varies as a function of the treated area. In 
Fig. 2a, the vulnerability index performs well for treated areas less than 
20 %, the out-strength index is most effective for treated areas between 
25 % and 35 %, and the vulnRand index works best for treated areas 
between 45 % and 85 %. VulnRand is also the most effective strategy 
overall (Fig. 2b). Stochasticity in the results decreases as the treated area 

Table 1 
List of the strategies, named as the corresponding indices or algorithms, used to 
prioritize nodes for control optimization. See Fig. SI1 for a spatial representation 
of the indices.

Strategy Type Description References

In-degree Network 
centrality 
index

The number of edges 
(connections) incoming a 
node

Pósfai and 
Barabási (2016)

Out-degree Network 
centrality 
index

The number of edges 
outgoing a node

Pósfai and 
Barabási (2016)

In-strength Network 
centrality 
index

The sum of the weights of 
the edges incoming a 
node

Pósfai and 
Barabási (2016)

Out-strength Network 
centrality 
index

The sum of the weights of 
the edges outgoing a node

Pósfai and 
Barabási (2016)

Betweenness Network 
centrality 
index

The number shortest 
paths beetween two other 
nodes of the network 
passing for a specific 
node

Freeman (1978)

Coreness Network 
propagation 
index

The k-shell 
decomposition of a 
network into 
substructures from the 
most peripherical to the 
most central one

Seidman (1983)

GRWA Network 
propagation 
index

Generalized Random 
Walker Accessibility: a 
measure of accessibility 
based on the Random 
Walker

Travencolo and 
Costa (2008); de 
Arruda et al. 
(2014)

VoteRank Network 
propagation 
index

The ability of spreading 
information, based on an 
iterative voting algorithm

Zhang et al. 
(2016)

Vulnerability Epidemic risk 
index

The average local losses 
by secondary infection, 
started anywhere in the 
region

Radici et al. 
(2024)

Dangerousness Epidemic risk 
index

The overall average 
losses in the region 
caused by a primary 
infection in that node

Radici et al. 
(2024)

OrchardDen Territorial 
index

The peach cultivated area 
within a node

-

Random Stochastic 
algorithm

Random sampling -

Regular Stochastic 
algorithm

A sampling based on the 
st_sample() function 
(type = ’regular’) of 
the sfR package, 
(version R 0.5–0)

-

VulnRand Mixed 
stochastic 
algorithm

Stochastic sampling, 
weighted by vulnerability

-

DanRand Mixed 
stochastic 
algorithm

Stochastic sampling, 
weighted by 
dangerousness

-
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increases, as it is primarily driven by the variability in epidemic dy
namics, which is increasingly reduced as more nodes are treated (the 
interquartile rage decreases from 37 to 10 kton). For high treated areas 
(>90 %), it is not possible to identify a unique optimal strategy (see 
Table 2) because, as the number of treated nodes approaches the entire 
study area, the importance of the prioritization strategy diminishes. 
Interestingly, even in the 20–40 % treated area range, no single strategy 
significantly outperforms the others, although both danRand and vuln
Rand perform well.

The curves of the maximum revenues proxy Ŕ MS for different treated 
areas and price multiplier θ consider again a mix of prioritization al
gorithms (Fig. 3). For θ = 1 (lower curve in panel a), there is no added 
value in untreated fruit, so that maximizing revenues is equivalent to 
maximize overall production (as reported in Fig. 2) and could be ob
tained treating 100 % of the production sites. For increasing values of θ, 
revenues increase, and the treated area at which the revenues are 
maximized (i.e., the treated area on the x-axis that corresponds to the 
highest point of the depicted curve) decreases. In the extreme case, for θ 
> 2.88, the optimal management would be to leave all the crop pro
duction sites untreated.

Since the estimated revenues vary with θ, also the optimal 

prioritization strategy for a given treated area varies. For θ = 1, the set of 
strategies optimizing production at a given treated area is the same as 
reported in Fig. 2a. For increasing values of θ, strategies such as the out- 
strength, which performed well for θ = 1 for treated areas between 25 % 
and 40 %, are now outperformed (these outcomes are summarized in 
Fig. 3b). The strategies optimizing the total revenues are vulnRand (θ ∈
(1, 1.31]), danRand (θ ∈ (1.31, 1.73]), and vulnerability (θ ∈ (1.73, 
2.88]).

4. Discussion

This study is part of a body of recent research highlighting the 
importance of spatial planning at the landscape scale for effective dis
ease management (Papaix et al., 2014; Fabre et al., 2021). Dispersal of 
bioaggressors creates inter-dependencies between measures taken at 
different sites, necessitating coordinated strategies for optimized con
trol. Landscape-scale management is essential for disease surveillance 
(Park et al., 2011; Carvajal-Yepes et al., 2019; Meyer et al., 2017; Radici 
et al., 2022) and it is increasingly recognized in EU agricultural policies 
(European Commission, 2020). For brown rot of peaches, we assumed 
that the national scale was appropriate for capturing these 
inter-dependencies. This choice represents a simplification, since bio
aggressors spread over administrative boundaries. However, in this 
particular case, French boundaries corresponds to significative ecolog
ical obstacles (Mediterranean Sea, the Alps and the Pyrenees) to the 
dispersal of Monilinia spores. The main hypothesis would not have stand 
for other pathosystems, such as soybean rust (Phakopsora pachyrhizi) or 
wheat stem rust (Puccinia graminis), due to the large host crop areas and 
extreme pathogen mobility (Thompson et al., 2016; Radici et al., 
2023b).

Increasing crop production and reducing the use of chemicals are 
considered conflicting objectives (Morris et al., 2024). However, in the 
long term, these objectives may converge due to the emergence of 
resistance against chemical treatments, which diminishes their effec
tiveness over time (Olitaa et al., 2023). Our model has provided insights 
into the form of the relationship between fungicide use and crop pro
duction. Specifically, the curve depicting optimized total production as a 

Fig. 2. Estimated nationwide peach production in France (median and inter-quartile ranges), in the presence of brown rot disease, based on varying amounts of 
treated area where the disease cannot spread. The areas to be treated, modeled as nodes in a network, are selected according to different prioritization strategies 
(color code - see legend in the inset b). The colored points represent the combinations of management scenarios MS (treated area and prioritization strategy) that 
maximize nationwide production, while the other combinations (median and inter-quartile ranges) are shown in grey. The inset (b) shows the expected value of the 
medians for each prioritization strategy (intended as the normalized integral over the trajectory of the medians) and provides a global view of each strategy’s 
performance.

Table 2 
Statistically optimal strategies for each decile of treated area, i.e., whose per
formance are significantly better (p-value <0.05 in the one-tail two-samples 
Wilcoxon statistical test) than any other. Two-sample comparisons are reported 
extensively in Fig.s SI2 and SI3.

Treated area Optimal strategies

0–10 % Vulnerability
10–20 % Vulnerability, orchardDen
20–30 % DanRand, vulnRand
30–40 % Out-strength, GRWA, danRand, vulnRand
40–50 % VulnRand
50–60 % VulnRand
60–70 % VulnRand
70–80 % VulnRand
80–90 % VulnRand
90–100 % DanRand, voteRank, vulnRand, Regular
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function of treated area exhibits a downwards concavity (Fig. 2a). This 
implies that in a scenario where all orchards are treated, a slight 
reduction in fungicide use would have a minimal impact on total pro
duction, similarly to what happens in human and veterinary diseases 
control due to the “herd immunity” effect (Keeling and Rohani, 2011).

Strategy performances are characterized by very high stochasticity, 
implying the use of statistical tests to be robustly assessed. The first 
component of this stochasticity is related to the impact of weather and 
peach variety on total production. This is the only source of stochasticity 
when the domain is fully treated, and results in an interquartile range of 
about 10 kton in total production. The second component is epidemio
logical and concerns the probability of airborne infection, reflecting the 
randomness of wind as dispersal medium (Jeger et al., 2007). Combined 
with the first, the variability is highest when no treatment is applied 
(interquartile range of 37 kton).

Given the variety of available strategies to prioritize treatment sites 
according to multiple objectives, our findings can be conceptualized as 
identifying a Pareto front. This Pareto fron includes optimal manage
ment scenarios in which no alternative exists with both a smaller treated 
area and a higher total production. Among the prioritization strategies, 
the vulnRand index emerges as the most effective, composing large part 
of the Pareto front when the treated area exceeds 20 %, with its random 
component gaining importance as treatment coverage increases. Pres
ently, treated areas cover the vast majority of peach orchards (Ministère 
de l’Agriculture, 2020), but our analysis suggests that if agricultural 
practices were to shift toward a substantial reduction in fungicide 
deployment — a case that mirrors a scenario in public health where 
limited vaccine doses are preferentially allocated to targeted individuals 
— prioritization based on node vulnerability would be the most effec
tive. In the French context, this corresponds to targeting orchards in the 
middle Rhône region (Fig. SI1k). A spatial node is considered more 
vulnerable if, while initially disease-free, it has a high risk of developing 
secondary infections (Meentemeyer et al., 2011). In the presented 
framework, vulnerability is strongly influenced by site-specific factors, 
such as the frequency of rainy days during the susceptibility period, as 
precipitation is necessary for fruit to transition from an exposed to an 
infected state (Radici et al., 2024; Bevacqua et al., 2023).

Interestingly, the distribution of organic peach and nectarine 

cultivation across productive French departments partially aligns with 
our suggested strategy based on vulnerability (Ministère de l’Agri
culture, 2020). For instance, in the Pyrénées-Orientales — a 
low-vulnerability region (“département”) near the Spanish border (Fig. 2
and SI1) — 44 % of areas are organic. In contrast, Drôme and Gard, 
which are highly vulnerable, have organic shares of just 5.9 % and 
6.1 %, respectively.

When the majority of the nodes in a network are treated, the strategy 
used to select which ones to treat becomes less significant, up to the 
extreme case where, if all nodes are treated, any ordering strategy be
comes irrelevant. However, before reaching this extreme case, our re
sults indicate that the composite index combining vulnerability with 
random sampling turns to be the best. In our study, random sampling 
alone performed unexpectedly well and incorporating a random 
component into an environmentally informed prioritization, such as 
vulnerability, enhanced performance further.

Unlike spatially auto-correlated sampling techniques, random sam
pling achieves a more homogeneous node coverage, similar to regular 
sampling, which also shows a competitive performance (Fig. 2b). 
Random sampling is commonly used in disease surveillance to ensure 
broad coverage (Herrera et al., 2016), and combining different priori
tization algorithms in a new one is a well-established practice in plant 
disease management (Sutrave et al., 2012). Combining 
epidemiologically-informed prioritizations (like vulnerability) with 
random sampling helps mitigate decentralized transmission of the dis
ease, especially after high-risk nodes have been immunized.

Among the network-based indices tested, only out-strength demon
strated optimal performance under intermediate treatment targets. This 
finding suggests that, for controlling brown rot of peaches, management 
strategies should prioritize epidemiological or territorial characteristics 
— such as rainy-day frequency, which correlates with vulnerability — 
over purely network-based metrics. Despite the minor role of network- 
based indices, not all performed equally. Out-strength and out-degree 
consistently outperformed in-strength and in-degree, respectively. This 
differentiation aligns with their epidemiological interpretations: nodes 
with high out-degree or out-strength are more likely to act as influential 
spreaders in small networks (Pautasso et al., 2010). Similarly, Andersen 
et al. (2019) demonstrated that the out-degree of a seed-trade network’s 

Fig. 3. Effect of the variation of the price multiplier θ on the revenues and on the oprimal (revenues sensu) treated area. a) Estimated revenues Ŕ MS variation for 
different treated areas and different market value of untreated fruit. The reference value (100 %) is estimated via Eq. 2 for the extreme scenario where the entire 
peach production area is treated. b) Treated area and prioritization strategies maximizing revenues from peach production for different values of the price multi
plier θ.
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starting node can determine the final size of a disease outbreak. These 
observations underscore the utility of certain network metrics in iden
tifying influential nodes, even if their broader application to our 
pathosystem is limited.

The presented exercise allowed to identify which areas, in the hy
pothetical case of a collective management of the national peach pro
duction area, should remain untreated in order to maximize collective 
revenues. Nowadays, 88 % of the French peach and nectarine cultivated 
areas are treated with fungicide (Ministère de l’Agriculture, 2020). 
According to the presented simulations, a value of θ ≈ 1.03 would justify 
such a use of fungicide. However, the price of organic peaches is almost 
double (i.e., θ ≈ 2; Eurostat, 2024). One epidemiological reason for this 
mismatch is the fact that we modeled only the impact of brown rot, 
while fungicide-free peach orchards face risks from multiple fungal 
diseases, including peach leaf curl (Taphrina deformans), peach scab 
(Cladosporium carpophilum), and powdery mildew (Podosphaera pannosa; 
Luo et al., 2022). Moreover, organic farming standards are far more 
rigorous than what we model as “untreated”. In fact, organic farming not 
only addresses the use of fungicides but also regulates other phytosa
nitary products, the use of fertilizers, and other agricultural practices. By 
considering only brown rot dynamics, our simulations realistically es
timate an upper boundary of the total production, rather than its ex
pected value. Nonetheless, the significance of this study lies in 
demonstrating the effects that a higher market value of organic products 
should have on a coordinated agricultural management. This value can 
be increased either by a greater willingness of consumers to pay or by 
higher costs associated with the use of polluting substances. Indeed, 
recent research demonstrated that consumers are prone to pay more for 
products issued by low-input agriculture. Lin et al. (2008) estimated 
price premiums associated with product attributes focusing on five 
major fresh fruits and five major fresh vegetables in the United States. 
They suggested that the organic attribute commands a significant price 
premium, which varies from a minimum of 15 % above conventional 
prices for carrots and tomatoes to a maximum of 60 % for potatoes. 
Similarly, de Souza Tavares et al. (2021) reported that organic juices are 
more expensive than their conventional counterparts with prices 
approximately 50 % higher in Brazil and 10 % higher in France, sup
porting the perception of higher costs associated with organic products.

Alternatively, higher income to producers who favor untreated 
production might be induced by policies designed to internalize the 
environmental costs of synthetic compounds used in treatments 
(Kümmerer et al., 2019). According to the “polluters pay” principle, 
external costs could be internalized through taxation, promoting less 
harmful alternatives (Ambec and Ehlers, 2016). This principle underpins 
policies like the “carbon tax”, which aims to reduce greenhouse gas 
emissions by increasing the costs of high-emission options (Khan, 2015).

Although the higher profits associated with organic fruit production 
may encourage the expansion of these practices, especially in the 
wealthiest parts of the world, it is important to remember that bio
aggressors control aims to ensure food access for all of the planet’s in
habitants (Savary et al., 2019). This means that, when an agricultural 
product is essential for feeding a population, it is unacceptable to reduce 
its quantity in order to increase producers’ profits. While political con
siderations are beyond the scope of our work, we believe they should not 
be overlooked when interpreting our results.

Apart from the omission of other peach fungal pathogens and of 
possible external introduction of Monilinia spores an important limita
tion of the study concerns the absence of fungicide-related costs. Taking 
into account these costs would make the production of untreated fruit 
easier than in the presented framework. This would result in a faster 
reduction of the treated area as the price multiplier θ increases.

When considering the impact of bioaggressors in crop production in 
future decades, particular attention should be given to the synergy with 
expected climate change, which is already affecting agricultural yields 
and larger impacts are expected in future scenarios (Ray et al., 2019; 
Ortiz-Bobea et al., 2021; Lesk et al., 2016). Estimates indicate an 

expected reduction of the global crop yield from 3 % to 7 % for each 
degree-Celsius of temperature increase (Zhao et al., 2017; Liu et al., 
2016; Rezaei et al., 2023) and a reduced cropland suitability at lower 
latitudes (Rosenzweig et al., 2014; Zabel et al., 2014). In the case of 
peach production in France, it is expected to decline drastically without 
adaptation measures, as regions where peach is currently cultivated 
might not be able to assure chilling conditions necessary for plant 
blooming (Vanalli et al., 2021). Conversely, the impact of brown rot may 
diminish under warmer and drier conditions (Vanalli et al., 2024).
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Pósfai, M., Barabási, A.-L., 2016. Network Science. Cambridge University Press, 
Cambridge. 

Radici, A., Bevacqua, D., Miele, L., and Martinetti, D. (2023a). Network-thinking to 
optimize surveillance and control of crop parasites. A review.arXiv preprint arXiv: 
2310.07442.

Radici, A., Martinetti, D., and Bevacqua, D. (2022). Early-detection surveillance for stem 
rust of wheat: insights from a global epidemic network based on airborne 
connectivity and host phenology. Environ. Res. Lett.

Radici, A., Martinetti, D., Bevacqua, D., 2023b. Global benefits and domestic costs of a 
cooperative surveillance strategy to control transboundary crop pathogens. Plants, 
People, Planet 5 (6), 923–932.

Radici, A., Martinetti, D., Vanalli, C., Cunniffe, N., Bevacqua, D., 2024. A metapopulation 
framework integrating landscape heterogeneity to model an airborne plant 
pathogen: the case of brown rot of peach in France. Agric. Ecosyst. Environ., 108994

Ray, D.K., West, P.C., Clark, M., Gerber, J.S., Prishchepov, A.V., Chatterjee, S., 2019. 
Climate Change has likely already affected global food production. PLoS One 14 (5), 
e0217148.

Rezaei, E.E., Webber, H., Asseng, S., Boote, K., Durand, J.L., Ewert, F., Martre, P., 
MacCarthy, D.S., 2023. Climate Change impacts on crop yields. Nat. Rev. Earth 
Environ. 4 (12), 831–846.

Ristaino, J.B., Anderson, P.K., Bebber, D.P., Brauman, K.A., Cunniffe, N.J., Fedoroff, N. 
V., Finegold, C., Garrett, K.A., Gilligan, C.A., Jones, C.M., et al., 2021. The persistent 
threat of emerging plant disease pandemics to global food security. Proc. Natl. Acad. 
Sci. 118 (23), e2022239118.

Rosenzweig, C., Elliott, J., Deryng, D., Ruane, A.C., Müller, C., Arneth, A., Boote, K.J., 
Folberth, C., Glotter, M., Khabarov, N., et al., 2014. Assessing agricultural risks of 
climate change in the 21st century in a global gridded crop model intercomparison. 
Proc. Natl. Acad. Sci. 111 (9), 3268–3273.

Rosic, N., Bradbury, J., Lee, M., Baltrotsky, K., Grace, S., 2020. The impact of pesticides 
on local waterways: a scoping review and method for identifying pesticides in local 
usage. Environ. Sci. Policy 106, 12–21.

Rusch, A., Valantin-Morison, M., Sarthou, J.-P., Roger-Estrade, J., 2010. Biological 
control of insect pests in agroecosystems: effects of crop management, farming 
systems, and seminatural habitats at the landscape scale: a review. Adv. Agron. 109, 
219–259.

Savary, S., Willocquet, L., Pethybridge, S.J., Esker, P., McRoberts, N., Nelson, A., 2019. 
The global burden of pathogens and pests on major food crops. Nat. Ecol. Evol. 3 (3), 
430–439.

Seidman, S.B., 1983. Network structure and minimum degree. Soc. Netw. 5 (3), 269–287.
Strona, G., Carstens, C.J., Beck, P.S., 2017. Network analysis reveals why Xylella 

fastidiosa will persist in Europe. Sci. Rep. 7 (1), 1–8.
Sumberg, J., Giller, K.E., 2022. What is ‘conventional’ agriculture? Glob. Food Secur. 32, 

100617.
Sutrave, S., Scoglio, C., Isard, S.A., Hutchinson, J.S., Garrett, K.A., 2012. Identifying 

highly connected counties compensates for resource limitations when evaluating 
national spread of an invasive pathogen. PLoS One 7 (6), e37793.

Thompson, R.N., Cobb, R.C., Gilligan, C.A., Cunniffe, N.J., 2016. Management of 
invading pathogens should be informed by epidemiology rather than administrative 
boundaries. Ecol. Model. 324, 28–32.

Travençolo, B.A.N., Costa, L.d.F., 2008. Accessibility in complex networks. Phys. Lett. A 
373 (1), 89–95.

Vanalli, C., Casagrandi, R., Gatto, M., Bevacqua, D., 2021. Shifts in the thermal niche of 
fruit trees under climate change: the case of peach cultivation in France. Agric. For. 
Meteorol. 300, 108327.

Vanalli, C., Radici, A., Casagrandi, R., Gatto, M., Bevacqua, D., 2024. Phenological and 
epidemiological impacts of climate change on peach production. Agric. Syst. 218, 
103997.

Yadav, I.C., Devi, N.L., 2017. Pesticides classification and its impact on human and 
environment. Environ. Sci. Eng. 6, 140–158.

Zabel, F., Putzenlechner, B., Mauser, W., 2014. Global agricultural land resources–a high 
resolution suitability evaluation and its perspectives until 2100 under climate 
change conditions. PLoS One 9 (9), e107522.

Zhang, J.X., Chen, D.-B., Dong, Q., Zhao, Z.-D., 2016. Identifying a set of influential 
spreaders in complex networks. Sci. Rep. 6 (1), 27823.

Zhao, C., Liu, B., Piao, S., Wang, X., Lobell, D.B., Huang, Y., Huang, M., Yao, Y., Bassu, S., 
Ciais, P., et al., 2017. Temperature increase reduces global yields of major crops in 
four independent estimates. Proc. Natl. Acad. Sci. 114 (35), 9326–9331.

A. Radici et al.                                                                                                                                                                                                                                  Agriculture, Ecosystems and Environment 392 (2025) 109722 

7 


